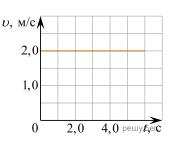
Централизованный экзамен по физике, 2023

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Из перечисленного ниже измерительными приборами являются:

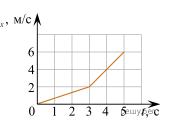

1) плотность;

2) площадь;

3) инерция;

5) динамометр.

2. График зависимости модуля скорости υ тела от времени t изображён на рисунке. Путь *s*, пройденный телом за промежуток времени $\Delta t = 2.0 \text{ c, paseh:}$


1) 2,0 м; 2) 4,0 м;

3) 8,0 м;

4) 16,0 м;

5) 32,0 м.

3. Тело движется вдоль оси Ох. График зависимости проекции скорости v_x тела от времени t изображён на рисунке. Если масса тела m = 1 кг, то в момент времени t = 4 с модуль результирующей сил F, действующих на тело, равен:

1) 1 H;

2) 2 H;

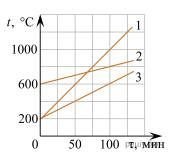
3) 3 H;

4) 4 H;

5) 5 H.

4. Единицей абсолютной температуры в СИ является:

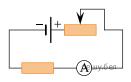
1) джоуль;

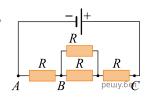

2) моль;

3) паскаль;

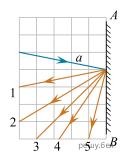
4) кельвин;

5) ватт.

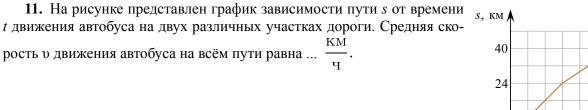

5. На рисунке изображён график зависимости температуры t от времени т для трёх тел (1, 2 и 3) одинаковой массы, помещённых в печь. Если каждому из тел ежесекундно сообщалось одно и то же количество теплоты, то для удельных теплоёмкостей веществ c_1 , c_2 и c_3 этих тел выполняется соотношение:


1) $c_1 < c_2 = c_3$ 2) $c_1 = c_3 < c_2$ 3) $c_1 < c_3 < c_2$ 4) $c_2 < c_3 < c_1$

5) $c_3 = c_2 < c_1$

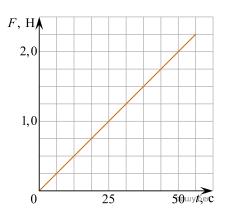

6. На рисунке изображена схема электрической цепи. Из перечисленного ниже выберите элементы, присутствующие в электрической цепи:

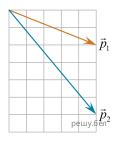
- 1) вольтметр;
- 2) источник тока;
- 3) реостат;
- 4) лампа накаливания;
- 5) резистор.
- 7. Электрическая цепь состоит из источника тока и четырёх одинаковых резисторов сопротивлением R каждый (см. рис.). Если между точками A и Cнапряжение $U_{AC} = 12 \text{ B}$, то напряжение U_{BC} между точками B и C равно:


- 1) 3,0 B;
- 2) 4,0 B;
- 3) 7,2 B;
- 4) 8,4 B;
- 5) 10 B.
- **8.** Световой луч a падает на поверхность плоского зеркала AB. Отражённый от зеркала световой луч обозначен на рисунке цифрой:

- 1) 1: 2) 2: 3) 3: 5) 5.
- 9. Если при переходе атома водорода из одного стационарного состояния в другое был испущен квант электромагнитного излучения частотой $v = 4.6 \cdot 10^{14} \, \Gamma$ ц, то модуль разности энергий $|\Delta E|$ атома водорода в этих стационарных состояниях равен:
 - 1) 13,6 ³B;
- 2) 11,3 ₃B;
- 3) 9,4 3B;
- 4) $7.8 \ni B$;

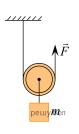
5) 21.


- 5) 1,9 ₃B.
- **10.** Количество протонов в ядре атома лития ${}_{3}^{7}$ Li равно:
 - 1) 3:
- 3) 7;
- 40

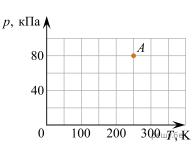

- 0,40
- 12. Автомобилист и мотоциклист движутся с постоянными скоростями в одном направлении по прямолинейному участку шоссе. Автомобилист, модуль скорости которого $v_1 = 80 \ \frac{\mathrm{KM}}{\mathrm{Y}}$, обгоняет мотоциклиста, модуль скорости которого $v_2 = 56 \ \frac{\mathrm{KM}}{\mathrm{Y}}$. Через промежуток времени $\Delta t = 30 \ \mathrm{мин} \ \mathrm{c}$ момента обгона расстояние l между автомобилистом и мотоциклистом станет равным ... км.

13. Материальная точка массой m=2,0 кг движется вдоль оси Ox. Если кинематический закон движения материальной точки имеет вид $x(t)=A+Bt+Ct^2$, где A=2,0 м, B=2,0 $\frac{\mathrm{M}}{\mathrm{C}}$, C=1,0 $\frac{\mathrm{M}}{\mathrm{C}^2}$, то кинетическая энергия E_{K} материальной точки в момент времени t=2,0 с равна ... Дж.

14. Тело массой m=726 г двигалось по гладкой горизонтальной поверхности со скоростью $\upsilon_0=1,0$ $\frac{\mathrm{M}}{\mathrm{C}}$. В момент времени $t_0=0$ с на тело в направлении его движения начинает действовать сила \vec{F} , модуль которой линейно зависит от времени (см. рис.). Скорость тела достигнет значения $\upsilon=31$ $\frac{\mathrm{M}}{\mathrm{C}}$ в момент времени t, равный ... с.

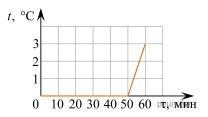


15. Камень бросили горизонтально. В момент времени $t_1=1,0$ с импульс камня был \vec{p}_1 , а в момент времени $t_2=3,0$ с импульс камня стал \vec{p}_2 (см. рис.). В момент броска ($t_0=0$ с) модуль начальной скорости v_0 камня был равен ... $\frac{M}{C}$.



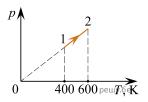
16. Вокруг планеты по круговым орбитам движутся два спутника. Радиус орбиты первого спутника в k=2,25 раза больше радиуса орбиты второго спутника. Если период обращения первого спутника $T_1=43,9$ суток, то период обращения T_2 второго спутника равен ... суток (сутки).

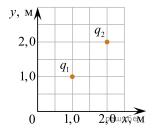
17. Груз массой m=7,2 кг равномерно поднимают с помощью подвижного блока (см. рис.). Если коэффициент полезного действия блока $\eta=80$ %, то модуль силы F, приложенной к свободному концу верёвки, равен ... H.



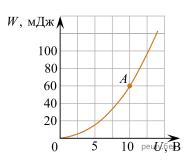
18. В p—T-координатах точкой A отмечено состояние идеального газа, количество вещества которого v=1,0 моль. Объём V газа в этом состоянии равен ... л.

19. Вечером при температуре воздуха $t_1=11,0\,^{\circ}\mathrm{C}$ относительная влажность воздуха была $\phi=68\%$. Ночью температура понизилась до $t_2=2,0\,^{\circ}\mathrm{C}$. Если плотность насыщенного водяного пара при температурах t_1 и t_2 равна соответственно $\rho_{\mathrm{H}1}=10,0\,\frac{\Gamma}{\mathrm{M}^3}$ и $\rho_{\mathrm{H}2}=5,6\,\frac{\Gamma}{\mathrm{M}^3}$, то из воздуха объемом $V=30\,\mathrm{M}^3$ выпала роса массой m, равной ... г.

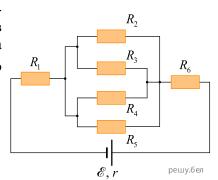

- **20.** Если в тепловом двигателе газ совершил за один цикл работу в n=6.7 раза меньше количества теплоты, отданного холодильнику, то термический коэффициент полезного действия у теплового двигателя равен ... %.
- 21. В открытом сосуде находится смесь воды и льда (удельная теплоёмкость воды $c=4200~\frac{\mbox{${\rm Д}{\rm K}$}}{\mbox{${\rm K}{\rm \Gamma}$}\cdot{\rm ^{\circ}C}},$ удельная теплота плавления льда $\lambda=3,4\cdot10^5~\frac{\mbox{${\rm Д}{\rm K}$}}{\mbox{${\rm K}{\rm \Gamma}$}}).$ Масса льда в смеси $\emph{$m_{\rm H}$}=63,0$ г. Сосуд


внесли в тёплую комнату и сразу же начали измерять температуру со-

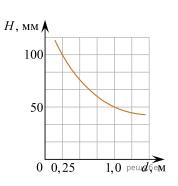
держимого сосуда. График зависимости температуры t смеси от времени т изображён на рисунке. Если количество теплоты, ежесекундно передаваемое смеси, постоянно, то общая масса $m_{\rm cm}$ смеси в начальный момент времени была равна ... г.


22. Идеальный одноатомный газ перевели из состояния 1 в состояние 2 (см. рис.). Если при этом газ получил количество теплоты Q = 27.4 кДж, то количество вещества газа у равно ... моль.

23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1 = 28$ нКл и $q_2 = -80$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат равен ... $\frac{B}{M}$



24. График зависимости энергии электростатического поля W конденсатора от напряжения U между его обкладками представлен на рисунке. Точке A на графике соответствует заряд конденсатора q, равный ... мКл.


- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 27.4 \text{ кBr} \cdot \text{ч}$, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Bt.
- 26. Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r = 0.50 Ом, и резистора сопротивлением R = 6.0 Ом. Если сила тока в цепи I = 2.0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27. На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 16$ Ом. Если ЭДС источника тока $\mathcal{E} = 291$ В, а его внутреннее сопротивление r = 6,0 Ом, то мощность P_5 , выделяемая в резисторе R_5 , равна ... Вт.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=7,2\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из катушки и конденсатора, ёмкость которого C=50 мкФ, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^3~\frac{\mathrm{pag}}{\mathrm{c}}$, то индуктивность L катушки равна ... мГн.
- **30.** График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Высота h карандаша равна ... см.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

